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Figure. 1. Psymberin (irciniastatin A), ircinia
A synthetic approach to the polysubstituted pyran core and amide side chain of psymberin (irciniastatin
A) using stereoselective organoboron methodology is described. An advanced oxyranyl pyran intermedi-
ate was prepared using a catalytic enantioselective and diastereoselective three-component reaction
involving first an inverse electron-demand hetero [4+2] cycloaddition between 3-boronoacrolein pinaco-
late and 1-ethoxy-2-methylpropene, followed by an allylboration of ethyl glyoxylate. The amide side
chain was prepared highly efficiently using the first example of a doubly diastereoselective allylboration
of a chiral a-alkoxy aldehyde under the Lewis acid-catalyzed reaction manifold.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The isolation of natural products from marine organisms has
provided organic chemists with numerous challenges and opportu-
nities to develop new cures for diseases of great consequences,
such as cancer.1 In this regard, psymberin (1, Fig. 1) is a naturally
ll rights reserved.
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occurring and highly potent polyketide recently isolated indepen-
dently by two research groups. Crews and co-workers reported in
2004 the isolation of psymberin from a sea sponge from the waters
of Papua New Guinea, Psammocinia sp.2 At about the same time, a
group led by Pettit also reported the isolation of the same com-
pound, named irciniastatin A, from the Indo-Pacific marine sponge
Ircinia ramose.3 In the same publication, Pettit and co-workers also
described the isolation of a related structure, irciniastatin B, 2 (Fig.
1). Psymberin (irciniastatin A) is a complex pyran-containing nat-
ural product that embeds nine stereogenic centers. It is related
with its central pyran core to the pederin family (e.g., 3, Fig. 1),
which includes over 35 related structures known to display a range
of anticancer activities.4 Psymberin was tested in the NIH-60
human cancer cell line screen, and displayed an unusual profile.3 It
was found to be specific toward solid tumor cell lines, with a high
level of selectivity for melanoma cells characterized by a LC50 in
the low nanomolar range. It also showed activity against some
breast and colon cancer cell lines. The promising biological proper-
ties and novel structure of psymberin have attracted the attention
of the synthetic chemistry community, and thus far two total
syntheses have been achieved by the groups of De Brabander and
Buevich,5,6 as well as one formal synthesis.7 A few other synthetic
studies toward advanced fragments have been realized.8

We aimed to develop a convergent route to psymberin and its
subunits that would allow a structure–activity study of its antican-
cer activity that could lead to the design of a simplified analogue.
In this preliminary Letter, we describe our results focusing on the
central pyran core and the left-hand amide side chain (Fig. 2),
which altogether comprise six of the nine stereogenic centers of
psymberin. As shown in Figure 2, we anticipated that two of our
group’s organoboron-based methodologies could be put to use.
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Figure. 2. Retrosynthetic plan for fragments A and B of psymberin (1).
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First, our scandium-catalyzed allylboration with the methallyl
camphordiol boronate 49 could be exploited in the context of a
doubly diastereoselective addition to provide fragment A from a
protected, chiral a,b-dihydroxy aldehyde 5. This transformation
will provide the first ever test of the stereodirecting ability of this
Lewis acid-catalyzed allylboration procedure. Then, to assemble
the polysubstituted pyran unit, our tandem three-component
oxa[4+2] cycloaddition/allylboration10 between boronoacrolein
pinacolate (7), enol ethers, and aldehydes would be employed
under catalysis with Jacobsen’s Cr(III) chiral complex.11 To access
fragment B, the hindered 2,2-disubstituted enol ether 812 will be
employed for the first time in this three-component reaction,
which was foreseen as an additional element of difficulty.11c,13 A
reactive glyoxylate 9 will be used for the carbonyl allylboration
step leading to 6. It was further envisaged that a Lewis acid-cata-
lyzed reaction between allylSnBu3 and the acetal functionality in
the multicomponent reaction product, 6, would be performed in
order to extend the right-hand side chain of psymberin. Ultimately,
fragments A and B would be coupled using a known Curtius rear-
rangement/amidation sequence described in synthetic studies on
pederin.4b

2. Results and discussion

The doubly diastereoselective methallylation of known alde-
hyde 10 was tested with both antipodes of chiral camphordiol bor-
onate reagent 4 (Fig. 3). To this end, the intrinsic diastereofacial
selectivity of this system was first tested with achiral pinacol
methallylboronate 13 under both thermal (uncatalyzed) conditions
and under Sc(OTf)3 catalysis. The uncatalyzed reaction required
room temperature to proceed with an appreciable rate, and led
to almost no selectivity in the products 11 and 12. The low-tem-
perature Sc(III)-catalyzed variant led to an improvement, but the
modest diastereoselectivity of 5-to-1 in favor of the desired
product 11 emphasized the need for a double diastereoselection
strategy that would circumvent the need for separating diastereo-
meric products. To our great satisfaction, the use of chiral boronate
(+)-4 led to the exclusive formation of allylic alcohol 11 in good
yield.14 To confirm the powerful stereodirecting power of this re-
agent, the (�) antipode was reacted with the same aldehyde (10)
under identical conditions, only to observe a 1:2 ratio of products
11 and 12, respectively. Thus, even in a mismatched case, reagent 4
was capable of inverting the intrinsic diastereofacial bias of this
allylation reaction. The high selectivity obtained in the preparation
of 11 compares favorably to the use of Brown’s chiral methallyl-
boration method.5 It is noteworthy that the methallylation of 10
with reagent (+)-4 was accomplished in multigram quantities.
Homoallylic alcohol 11 was methylated with ease to afford the
desired ether 14 (Eq. 1).14 The latter could be transformed to the
requisite carboxylic acid precursor of fragment A using the
same straightforward sequence described by De Brabander and
co-workers.5
OH

O
O

NaH, CH3I

THF, 0 °C to rt

OMe

O
O

14 (85%)11

ð1Þ
The preparation of the pyran core, fragment B, required a chal-
lenging extension of our previously reported inverse electron-
demand hetero Diels–Alder cycloaddition of enal 7 catalyzed by
Jacobsen’s chiral chromium catalyst11 (15, Scheme 1).10 Whereas
vinyl ethyl ether reacts with 3-boronoacrolein pinacolate (7) in less
than 1 h at room temperature to afford the expected cycloadduct in
96% ee, the 2,2-dimethylated analogue 812 required about 24 h to
provide cycloadduct 16 (Scheme 1). The latter was obtained at best
in 90% ee, as measured on the corresponding alcohol 17 according
to Eq. 2. Enol ether 8 needs to be freshly distilled for the cyclo-
addition to proceed most efficiently. It was possible but not
beneficial to realize the allylboration in ‘one-pot’ as it led to lower
yields and the formation of unidentified decomposition products.
To avoid these problems, the Cr(III) catalyst was removed by
quickly passing the crude product through a pad of silica.
O OEt

Bpin

NaOAc, H2O2

17 (96%, 85-90% ee, 10:1 dr)

O OEt

HO

16

THF, 0 ˚C, 1 h ð2Þ
The second stage of this three-component reaction between 16
and the glyoxylate 18 was straightforward, and led to the desired
a-hydroxyalkylated pyran 19 in 91% yield and 10:1 diastereoselec-
tivity (85–90% ee for the major diastereomer shown, 19).14 Having
proven the feasibility of the key step for fragment B, several
methods were envisaged to functionalize the alkene of product
19. Toward this end, a stereoselective epoxidation with di-
methyldioxirane proved very efficient in affording 20 in good yield
(Scheme 1).14
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The formation of the desired stereoisomer 20 was confirmed by
X-ray crystallographic evidence on the p-iodobenzoate derivative
22 (Fig. 4).15 The facial selectivity can be explained by electrophilic
attack of the dioxirane on the least hindered alpha face of the most
favored half-chair conformation of 19 (Fig. 5). We were delighted
with this successful approach to an advanced precursor of
fragment B, and a few more transformations were explored in a
O OEt
O

O
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Figure. 4. Preparation and ORTEP of crystalline derivative 22.
preliminary way. To this end, the secondary hydroxyl group of
20 was easily inverted under Mitsunobu conditions to afford inter-
mediate 21 with the requisite stereochemistry for psymberin.
Initial efforts to reductively open the epoxide of 21 and to allylate
the acetal functionality are underway, and should provide an
advanced precursor of the unit B of psymberin ready for fragment
coupling.

3. Conclusion

This preliminary Letter demonstrates the feasibility of a syn-
thetic approach to the polysubstituted pyran core and amide side
chain of psymberin (irciniastatin A) using stereoselective organo-
boron methodology. An advanced oxyranyl pyran intermediate
was prepared using a catalytic enantioselective and diastereoselec-
tive three-component reaction involving first an inverse electron-
demand hetero [4+2] cycloaddition between 3-boronoacrolein
and 1-ethoxy-2-methylpropene, followed by an allylboration of
ethyl glyoxylate. The cycloaddition step was realized highly
enantioselectively for the first time with such a hindered enol
ether as the dienophilic component. Furthermore, the amide side
chain of psymberin was prepared highly efficiently using the first
example of a doubly diastereoselective allylboration under the
Lewis acid-catalyzed reaction manifold.
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